The United States National Vegetation Classification and International Collaborations

Scott B. Franklin University of Northern Colorado, Greeley CO

Vegetation Classification Panel

http://esa.org/vegweb2/

Outline of Talk

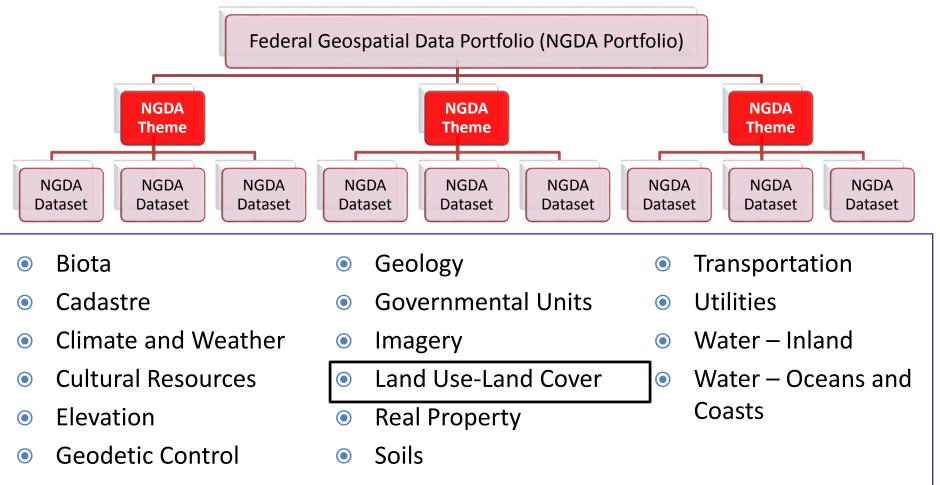
I. Introducing the USNVC Why a National Classification for US? i. ii. Partnership & Standard iii. EcoVeg Approach iv. Building the USNVC v. Infrastructure **II. Maintaining Dynamic Content** i. The Peer Review Board ii. The Review Process **III. USNVC collaborations IV. International Collaboration** i. Development ii. VCWG of IAVS

Why a National Classification?

Disparate classification systems in the US existed for many natural resources and thus the United States created the Federal Geographic Data Committee (FGDC) with various subcommittees to formulate national standards. The charges to the FGDC Vegetation Subcommittee were to:

 define and adopt standards for vegetation data collection and analysis,
 facilitate inter-agency collaboration and inter-agency product consistency,

3. foster accuracy, consistency, and clarity in the structure, labeling, definition and application of a systematic vegetation classification for the U.S.,


4. establish a national set of standards for classifying existing vegetation,

5. develop minimum metadata requirements, and

6. collaborate between state, federal and international efforts (FGDC 2008).

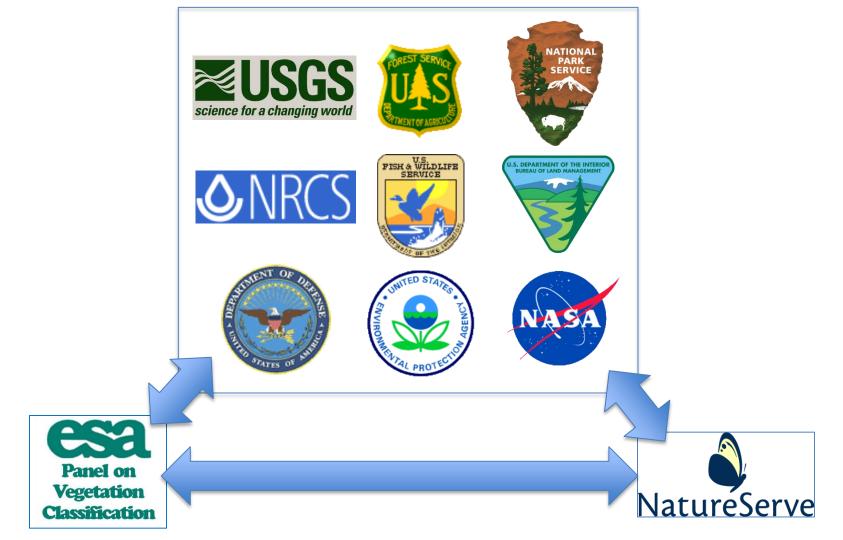
FGDC Organized all Classifications

NGDA Themes

FGDC Vegetation Subcommittee

The Mission/Purpose of the Vegetation Subcommittee is: the coordination of terrestrial vegetative data-related activities among Federal agencies and the establishment of a mechanism for the coordinated development, use, sharing, and dissemination of terrestrial vegetation data. Members include:

Marianne Burke, USFS
Mike Mulligan, USGS
Gene Fults, NRCS
Don Faber-Langendoen, NatureServe
Scott Franklin, ESA
Alexa McKerrow, USGS
Kristin Snow,
NatureServe


FederalGeographic DataCommitte

- +Jill Parsons, ESA
- •Harbin Li, USFS
- Robert Peet, UNC/ESA
- •Dave Tart, USFS
- **•** John Dennis, NPS
- •Michelle Cox,
 - **US Navy**

- •Carol Spurrier, BLM
- •Nate Herold, NOAA
- •Karl Brown, NPS
- •Kathy Goodin, NatureServe
- •Laurel Gorman, USACE
- •Elizabeth Middleton, NASA
- •Patrick Donnelly, FWS

NVC Partners FGDC Vegetation Subcommittee

FGDC-STD-005-2008 (Version 2)

Goals of National Vegetation Classification (NVC) Standard

- Define and adopt standards for vegetation data collection and analysis
- Facilitate inter-agency collaboration and inter-agency product consistency

NATIONAL VEGETATION CLASSIFICATION STANDARD, VERSION 2

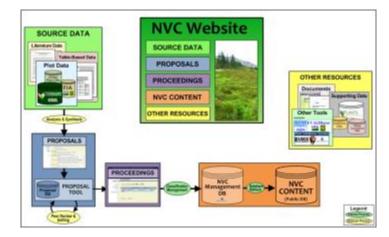
Vegetation Subcommittee Federal Geographic Data Committee

February 2008

- Foster accuracy, consistency, and clarity in the structure, labeling, definition and application of a systematic vegetation classification for the U.S.
- Establish a national set of standards for classifying existing vegetation
- Develop minimum metadata requirements
- Collaborate between state, federal and international efforts

How does the NVC Classify Vegetation?

- The classification is <u>hierarchical</u> and incorporates the physiognomic (top 3 levels), general floristic-biogeographic (mid 3 levels), and detailed floristic (lowest 2 levels) criteria, guiding all criteria by ecological considerations.
- **Type Concept**: Extensive concepts describe the full membership or range of variation of a type in relation to other types
- Like all biological systems, plant communities are temporally and spatially dynamic; they change at all possible scales.



USNVC: an EcoVeg Approach to Classification

- **Partners:** federal agencies, Ecological Society of America, NatureServe, Canadian agencies, Network.
- **Objectives:** provide a dynamic, multi-scaled ecosystem classification, applicable from international ecosystem red lists to sub-national EOs.
- **Major Deliverables:** comprehensive descriptions for all levels, posted on usnvc.org and NS Explorer, integrated with ongoing I&M and assessment programs (EPA wetlands, FIA forest inventory, ecoregional assessments, national mapping, etc).
- **Timeframe:** ongoing, with JAN 2016 deadline for first iteration of all levels.
- **Benefits.** Dynamic standard of ecosystem units shared by agency, academic and network partners, with practical links to mapping and assessments in concert with Ecological Systems.

From Natural to Cultural

Natural Vegetation Growth forms and floristic characteristics reflect ecological and biogeographic variables

Ruderal Vegetation Vegetation with no apparent recent historical natural analogs...often composed of invasive species that have expanded with human influence

Cultural Vegetation Distinctive structure and composition that is determined by the response to human intervention

10

Photo I. Asian elephant passing through a tea plantation (cultural vegetation) in the Valparai plateau in Anamalai Hills of the western Ghats, India, on its way from one natural forest patch to another. Classifying the type of cultural vegetation is impor-

All-Lands Approach

Proposed Planning Directives

- Ecological Integrity
 - Sustainability
 - Diversity
- Listed Species
 - Threatened & Endangered
 - Proposed, Candidate
- Social and Economic Sustainability
 - Cultural
 - Economy of communities

Two Main Explanatory Monographs

Ecological Monographs, 79(2), 2009, pp. 173-199 © 2009 by the Ecological Society of America

Standards for associations and alliances of the U.S. National Vegetation Classification

Michael D. Jennings,^{1,2,7} Don Faber-Langendoen,³ Orie L. Loucks,⁴ Robert K. Peet,⁵ and David Roberts⁶

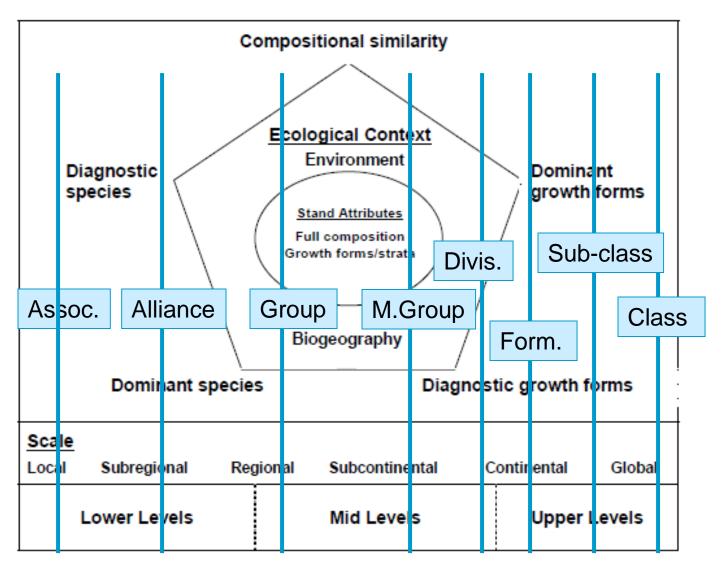
Ecological Monographs, 84(4), 2014, pp. 533-561 © 2014 by the Ecological Society of America

EcoVeg: a new approach to vegetation description and classification Don Faber-Langendoen,^{1,11} Todd Keeler-Wolf,² Del Meidinger,^{3,12} Dave Tart,⁴ Bruce Hoagland,⁵ Carmen Josse,¹ Gonzalo Navarro,⁶ Serguei Ponomarenko,⁷ Jean-Pierre Saucier,⁸ Alan Weakley,⁹ and Patrick Comer¹⁰

EcoVeg Approach*

Classify **existing** vegetation in context of ecological factors.

- physiognomic characteristics strongest role in describing broadscale vegetation patterns (e.g., UNESCO 1973), but relevant at all scales.
- **floristic characteristics** strongest role for fine-scale vegetation patterns. (e.g., Braun-Blanquet approach).
 - Full floristics (overall composition)
 - Dominants
 - Diagnostic species
- Ecological characteristics: plant communities respond to cumulative effects of climate, soil, geochemistry, topography, and disturbances. The vegetation is viewed as an integrated result of these ecological factors.


EcoVeg Hierarchy: Natural Vegetation

Analytical Methods

Hierarchy Levels	Example		
Upper		\wedge	•
Level 1 – Formation Class	Shrubland & Grassland		\
Level 2 – Formation Subclass	Temperate & Boreal Shrubland & Grassland	otive	
Level 3 - Formation	Temperate Grassland & Shrubland	Descriptive	
Mid			
Level 4 – Division	Great Plains Grassland & Shrubland	S	
Level 5 – Macrogroup	Great Plains Tallgrass Prairie	Quantitative Analysis	
Level 6 – Group	Central Great Plains Tallgrass Prairie	ive Al	
Lower		ntitat	
Level 7 – Alliance	Big Bluestem – Indian grass Mesic Prairie	Quai	-
Level 8 – Association	Big Bluestem – Indian grass / Gayfeather Prairie		/

Shifting significance of traits through the hierarchy:

From FGDC 2008

Level 1 – Formation Class

Woodland

(Mesomorphic)

Desert & Semi-Desert Vegetation (Xeromorphic Vegetation)

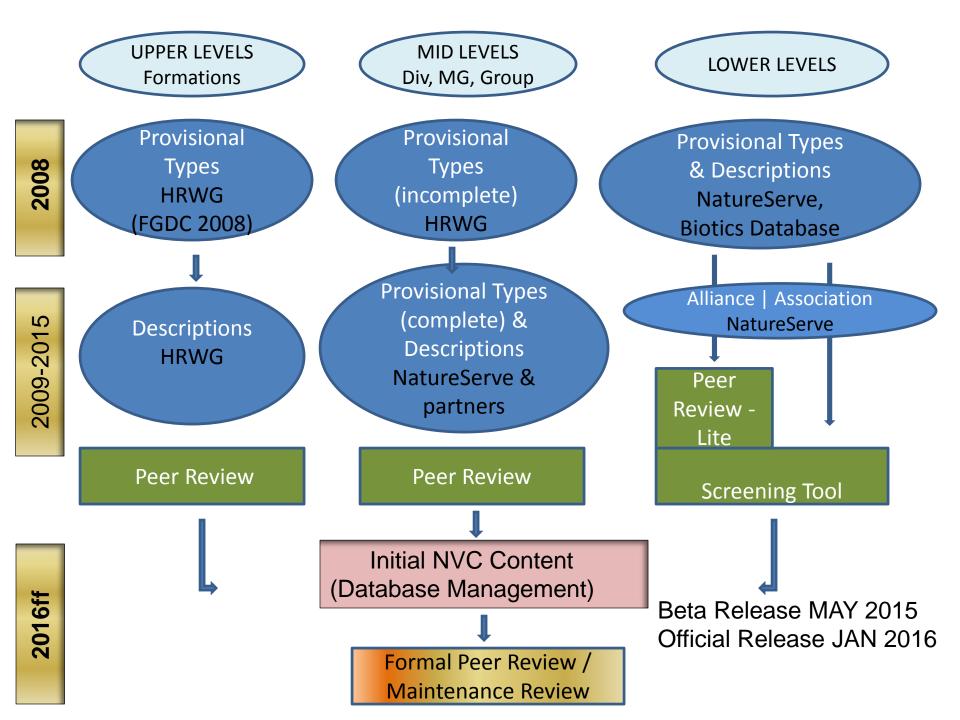
High Mountain Scrub and Grassland Vegetation (Cryomorphic Vegetation)

Aquatic Wetland Vegetation (Hydromorphic Vegetation)

Rock Vegetation (Lithomorphic Vegetation)

	evel	
Guideline	Division	Macrogroup
Definition (FGDC 2008)	A vegetation unit with broadly uniform growth forms and a broad set of diagnostic plant species at large biogeographic scales that reflect continental distinctions in climate, geology, substrates, hydrology, and disturbance regimes.	A vegetation unit that contains moderate sets of diagnostic plant species and diagnostic growth forms that reflect subcontinental to regional biogeographic composition and subcontinental to regional mesoclimate, geology, substrates, hydrology, and disturbance regimes.
Biogeography/floristics	Large scale, continental, biogeography with largely nonoverlapping floristics (i.e., most species ranges fully contained), species heterogeneity high. Global formations separated by continental-intercontinental patterns of species into divisions.	Subcontinental to regional ecological gradient segment (often mesoclimatic), reflected by sets of strongly diagnostic species (many species ranges fully contained); overall composition very distinct from other units.
Diagnostic species	A large suite of strongly diagnostic species (large number of character species among the diagnostic species; species have high fidelity but variable constancy).	Multiple sets of strong diagnostic species, including many strong differential and character species. Constant species become more important; at least 25% constancy expected.
Growth forms	Broadly uniform sets of growth forms and canopy closure (same as formation level, but variant expressions; e.g., conifer- dominated Rocky Mountain forest division vs. broad-leaf deciduous hardwood forests of Eastern North	Broadly uniform sets of growth forms and canopy closure. May be specific growth form variants that support floristic patterns, e.g., herb vs. shrub, coastal soft- leaved chaparral vs. inland sclerophyll chaparral.
Climate	American forest division). Continental macroclimate. Separates formations by continental or major intercontinental climatic patterns.	Subcontinental mesoclimate. Indicative of primary regional gradients in vegetation, e.g., latitudinal, altitudinal, continentality (major zonal or strong azonal gradients).
Disturbance regime/succession	Variable range of disturbance regimes consistent with continental expression of formation.	Broadly consistent, but variable disturbance regimes indicative of subcontinental climate (e.g., floods, large-scale fires).
Edaphic/hydrology	Broad range of conditions consistent with continental expression of formation (e.g., the divisions span floodplain and swamp conditions).	Broad range of conditions, sometimes reflective of broad topo-edaphic interactions with climate (e.g., large-scale droughty soils with or without fires) or broad-scale specialized geological substrates.

EcoVeg Hierarchy: Cultural Vegetation


Hierarchy Levels	Example
Upper	
Level 1 – Class	Anthromorphic Vegetation
Level 2 – Subclass	Herbaceous Agricultural Vegetation
Level 3 - Formation	Row and Close Grain Crop
Level 4 - Subformation	Graminoid Row Crop
Mid	
Level 5 – Group	Tropical and Temperate Corn Crop
Level 6 – Subgroup	Temperate Corn Crop
Lower	
Level 7 – Type	Zea mays Crop
Level 8 – Subtype	Zea mays var. saccharata–Zea mays var. rugosa Crop

Peer Review Board – ESA Panel Building the USNVC <u>& Maintaining</u> the USNVC

Editor-in-Chief: Don Faber-Langendoen

20+ Associate editors

	Region	Regional Editor
WEST	Warm Desert	Este Muldavin
	Californian	Todd Keeler-Wolf
	Cool Semi-Desert	Marion Reid
	Vancouverian	Del Meidinger
	Rocky Mountain	Jack Triepke
GREAT PLAINS	Great Plains	Bruce Hoagland
EAST	Laurentian-Acadian	Don Faber-Langendoen
	Central Interior-Midwest	Shannon Menard
	Appalachian- Northeast	TBD
	Southeast Coastal Plain	Alan Weakley
CARIBBEAN	Caribbean	TBD
BOREAL	Boreal-Subarctic	TBD (US)/Ken Baldwin (CA)
ARCTIC	Arctic / Alpine	TBD (US) / TBD (CA)
POLYNESIA	Hawaii	TBD

Three Main Forms of Review:

- "General Review"
 - Completed by the "Associate Editor," in charge of a number of groups within related macrogroups
- "Concept Review."
 - Completed by Regional Peer Reviewers, who review one to several related groups usually within one or a few macrogroups, depending on their expertise
- Narrative Evaluation
 - Reviewer's summary of questions:
 - Is the type definition valid?
 - What is needed or desired to improve description?
 - Is it well written and does it follow format ?
 - Is plot data summarized or used in specific analysis?

Concept Review Form Example

Criteria specific to Group:	Criteria Guidance	Scoring yes (y) no (n) uncertain (u)
 Does the group contain appropriate number of diagnostic and dominant species from the dominant strata or growth form? 	For the group it is appropriate for diagnostics to be from the dominant stratum or growth form. The diagnostics should be moderate in number (at least 5), share a broadly similar structure and ecology, and occur across a relatively wide geographic range. The group usually contains many moderate differential species or two or more strong differential (character) species. The above rules of dominance may not apply in sparse vegetation (e.g., deserts, coasts, cliff and talus or aquatic vegetation)	y/n/u <u>yes</u>
Comment	< 5 diagnostics listed However, other diagnostics not mentioned are <i>Ephedra nevadensis, Salazaria</i> <i>mexicana, Menodora spinosa, and Thamnosma</i> <i>montana.</i> Yucca schidigera and Coleogyne are not entirely characteristic since in other groups (but not as a diagnostic)	
2. Are there diagnostic species from other than the dominant strata?	For the group there should be several strong differential or characteristic species in other strata or growth forms in addition to those from the dominant stratum or growth form.	y/n/u <u>yes</u>
Comment	Yes Yucca brevifolia in tree layer (since a scrub), many of the additional species mentioned in detailed comments are good differentials and characteristics, mostly in shrub stratum	

3. Xeromorphic Scrub & Herb Vegetation (Semi-Desert)

3.A.1. Warm Semi-Desert Scrub & Grassland

3.A.1.a. North American Warm Desert Scrub & Grassland

MG088. Mojave-Sonoran Semi-Desert Scrub

[Peer Review] [837244] G296. Mojave Mid-Elevation Mixed Desert

Scrub Group

Narrative

Evaluation

via

SharePoint

Example

LeadResp / Assignment: West / Keith Reviewers: LAC, W

OVERVIEW

Database Code for Type: G296 Scientific Name: Vucca (brevifolia, schidigera) - Coleagene vanovissing, Mixed Desert Scrub Group Common Name (Translated Scientific Name): (Joshua Tree, Mojave Yucca) - Elackbrush Mixed Desert Scrub Group Colloquial Name: Mojave Mid-Elevation Mixed Desert Scrub Group Hierarchy Level: Group Placement in Hierarchy: MG088, Mojave-Sonoran Semi-Desert Scrub

Type Concept:

This group represents the extensive desert scrub in the transition zone above Larreg tridentate - Ambrosia dumasa desert scrub and below the lower montane woodlands (700-1800 m elevation) that occurs in the eastern and central Mojave Desert, and portions of the western Mojave. It is also common on lower piedmont slopes in the transition zone into the southern Great Basin! The vegetation in this group is quite variable. Larrea tridentata may be absent or present to codominant in some examples, but typically does not dominate. Characteristic and sometimes dominant species include Coleggine ramosissimal Erioganian fasciculatum. Ephedra nevadensis. Gravia spinosa, Lycium spp., Menodora spinescens. Nolina spp., Peucephyllum schottii, Opuntia acanthocarpa, <mark>Salazaria mexicana</mark>. Viguiera parishii, <mark>Vucca brevifolia,</mark> or <u>Vucca schidigera</u>. Less common are stands with scattered Joshua trees and a saltbush short-shrub layer dominated by Atriples canescens. Atriples canfertifolia, or Atriples polycarpa, or occasionally Humenoclea. salsala. In some areas in the western Mojave, *Juniperus californica* is common with the vuccas. Gravia spinosa is a common codominant shrub in disturbed stands. Desert grasses, including Achnatherum hymenoides, <mark>Achnatherum speciosum</mark>. Muhlenbergia porteri, Pleuraphis jamesii, Pleuraphis rigida, or Poa segunda, may form an herbaceous layer. Scattered Juniperus asteaspering or warm desert scrub species may also be present. Other good indicators include the shrubs or sub-shrubs: Sphaeralcea ambigua, Stephanomeria pauciflora, Psorothannus arborescens, Encelia virginensis, Muhlenbergia porteri. Psorothamnus fremontii, Salvia mojavensis, Mortonia utahensis, Buddleja utahensis

Classification Comments :

Similar NVC Types:

Diagnostic Characteristics [highly recommended]:

The presence of **Passa brevitalia** or Passa schidigera are diagnostic of this type, as is <u>Coleagyne</u> ramasissing which is often a dominant <u>(but not strongly diagnostic)</u> species. The widespread desert shub Larrea tridentata may be absent or present to <u>codominant</u> in some stands, but typically does not dominate here as it does at lower elevations. This is a diverse group, and stands may also be dominated or codominated by <u>Ephedra nerodensis</u>. <u>Eriogonan fasciculatum</u> Gravia epinosa Lucium andersonii. <u>Juniperus californica</u> <u>Menodora prinescem</u>. Nolina partri <u>Peucenbullum schattii <u>Salazaria mesicana</u>, and <u>Viguiera parishii</u>. <u>Calcophiles such as Mortonia utahensis</u>. <u>Buddleia utahensis occur</u> in the limestone <u>mountains of the central and eastern Mojave in this zone and Stephanmenti pauciflora. <u>Peorothammus</u> arborescent. <u>Encelia virginensis</u>. <u>Muhlenbergia porteri</u>. <u>Peorothammus falso good character species of the group</u>, though may not form dominant stands.</u></u>

Rationale For Nominal Species or Physiognomic Features:

Yucca brenifolia, Yucca schidigera, and *Colegence ranovisima* are conspicuous (tree yucca) or often dominant (blackbrush) in this mixed desert scrub group. Many other species may dominate, but <u>several</u>

Comment: Yachidigeta is more widespread and ranges to the coast of San Diego Co, not strictly <u>motioneran</u>

Comment: Coleogue ranges well beyond the Mojave, a better diagnostic would be Salizzaria merikana. **Diamnostra mentana**.

Formatted: Highlight

Comment: this is debatable. depending on which ecoursion boundary is used, if you dont include <u>Colections</u>, then it does not overhap with the Great Basin desert: It hink the desert's boundaries should be defined largely by wegetation indicators

Comment: characteristic of Mojave/Great Basin transition, not really of the entire group;

Comment: <u>Boss</u>, is really not characteristic of the Mojave it also occurs widely in the northern <u>Sourcea</u>, desert

Deleted: characteristic and either

Deleted: few are as

Deliverables of Initial Review

- 1. Consistent description materials within levels for all known 'concepts' across US (a completed USNVC)
- 2. A level of quality associated with each description: Confidence level
 - 1. Provisional insufficiently described; a guess
 - 2. Low insufficient plot data, unpublished
 - 3. Medium plot data and publications, but of varying quality
 - High high quality plot data, diagnostic species, specific environment, several publications
- 3. Basis for future efforts

Infrastructure

Searchable Classification

Explore The Classification

The U.S. National

Vegetation Classification

Search by Keyword:

The USNVC Hierarchy Explorer provides detailed descriptions of vegetation types in the U.S. with ecological context and geographic ranges.

Some levels of the USNVC are under development and review. For details see Status of the USNVC Natural Vegetation Hierarchy April2015.

Beta Release of the USNVC for the Conterminous U.S. - May 5, 2015

USNVC Hierarchy Explorer

Explore the classification by searching the NVCS database by keywords, by selecting a subset of the hierarchy, or by selecting states on the map. These criteria can be used in combination or separately.

0

Plot Data

Concept Descriptions

USNVC Proceedings

Highlights

Explore Th	e Classification		
ALARCHY EXPLO	The USNVC Hierarchy Explorer provides detailed descriptions of ecological context and geographic ranges.	vegetation types in the U.S. with	
Some levels of the USNVC are under development and review. For details see Status of the USNVC Natural Vegetation Hierarchy April2015.			
The U.S. National Vegetation Classification	Beta Release of the USNVC for the Conterminous U.S. – May 5, 2015		
USNVC Hierarchy Expl	orer		
selecting a subset of t	n by searching the NVCS database by keywords , by he hierarchy , or by selecting states on the map . These ombination or separately.	Download Download the NVCS database	
Search by Keyword:	0	(6MB, Delimited Text Format)	

Searched Colorado fro Class-Division; Only showing one Class

- I Mesomorphic Tree Vegetation Class
 - 1.B Temperate & Boreal Forest & Woodland Subclass
 - ▼ 1.B.1 Warm Temperate Forest & Woodland Formation
 - 1.B.1.Nd Madrean & Southwest Great Plains Warm Temperate Woodland & Scrub Division
 - ▼ 1.B.2 Cool Temperate Forest & Woodland Formation
 - ▼ 1.B.2.Na Acer saccharum Fagus grandifolia Quercus rubra Forest & Woodland Division
 ☑
 - 1.B.3 Temperate Flooded & Swamp Forest Formation
 - ▼ 1.B.3.Na Populus deltoides Fraxinus spp. Acer spp. Eastern North American Flooded & Swamp Forest Division 2
 - 1.B.3.Nc Populus angustifolia Populus balsamifera Picea engelmannii Rocky Mountain & Great Basin Montane Flooded & Swamp Forest Division ☑
 - I.B.3.Nd Populus fremontii Platanus wrightii Celtis laevigata Southwest North American Flooded Forest Division ☑

Clicked on one Division

Example Type Concept for one Association

- 1.B.2.Nb Rocky Mountain Cool Temperate Forest Division
 - M022 Abies concolor Pseudotsuga menziesii Picea pungens Forest Macrogroup
 - - - CEGL000387 Picea pungens / Carex siccata Forest

Association Detail Report: CEGL000387 Picea pungens / Carex siccata Forest

Print Report

Collapse All :: Expand All			
Translated Name:	Blue Spruce / Dry-spike Sedge Forest		
Colloquial Name:			

Type Concept

This blue spruce forest association occurs from Arizona and New Mexico north to Wyoming. This description is based on information from Grand Canvon National Park in Arizona, and additional global information will be added as it becomes available. This high-elevation association occurs on the North Rim from 2347 to 2683 m (7700-8802 feet) elevation in mesic environments. It occurs in canyons, coldair drainage channels, and on adjacent sideslopes. Slopes are low to moderate (up to 30°) and are usually west- or south-facing. Soils are primarily silt loams. Stands have a high cover of litter, some bare soil, and occasionally significant moss cover. There is minor evidence of fire in several stands; however, the mesic nature of this association and its typical positioning along cold-air drainages have precluded any significant influence from fire. Picea pungens, Pinus ponderosa, and occasionally low cover of Populus tremuloides dominate the canopy of this mesic, mixed-conifer community. Picea pungens, Populus tremuloides, and Abies concolor are common components of the subcanopy. Shrub layers are typically sparse. Juniperus communis is the most frequent and abundant short shrub, while Rosa woodsii occurs occasionally as a dwarf-shrub with extremely low cover. Carex siccata clearly dominates the herbaceous layer. Poa fendleriana and Bromus ciliatus are also common graminoids, typically at low cover. Forb cover is very sparse in this vegetation type. Antennaria parvifolia. Achillea millefolium, and Fragaria virginiana are common components of the understory. Seedlings of Populus tremuloides are ubiquitous and seedlings of Abies concolor and Picea pungens are also very common. This association essentially hosts the highest species richness of all high-elevation, forested community types in Grand Canyon National Park, with 32 species per 400-square-meter plot. This may be a result of the vicinity of this vegetation type, which occurs in cold-air drainages, to the adjacent meadow communities (which are often particularly species-rich).

- Classification

	Vegetation Hierarchy
Class	1 Mesomorphic Tree Vegetation Class
Subclass	1.B Temperate & Boreal Forest & Woodland Subclass
Formation	1.B.2 Cool Temperate Forest & Woodland Formation
Division	1.B.2.Nb Rocky Mountain Cool Temperate Forest Division
Macrogroup	1.B.2.Nb.1 Abies concolor - Pseudotsuga menziesii - Picea pungens Forest Macrogroup
Group	1.B.2.Nb.1.d Abies concolor - Picea pungens - Pseudotsuga menziesii Mesic Southern Rocky Mountain Forest Group
Alliance	1.B.2.Nb.1.d Picea pungens Forest Alliance

www.vegbank.org

FDGC 2008 Standard calls for:

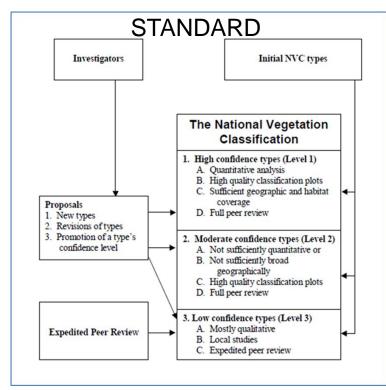

1. Newly defined types to be supported by field data.

2. A permanent archive of plot data to support vegetation classification.

Also indexed in GIVD: Global Index of Vegetation Databases

Add/Drop	Code Plot Location	Plants Found on Plot Change plant label: ⑦ Current Interpretation, Scientific Name without authors ✓	Plot Communities
Plot #1	001-Schieb- 90a Colorado, United States » Details	Bouteloua dactyloides** (37.5%) Opuntia polyacantha** (37.5%) Souteloua gracilis** (7.5%) Aristida purpurea** (7.5%) Gutierrezia sarothrae** (7.5%)	No data
Plot #2	001-01- Brandt6.9 Colorado, United States » Details	Bouteloua gracilis** (62.5%) Bouteloua dactyloides** (37.5%) Pascopyrum smithi** (3.5%) Opuntia polyacantha** (3.5%) Chrysothamnus viscidiflorus** (3.5%)	No data
Plot #3	001-01- Brandt6.5 Colorado, United States » Details	Agropyron cristatum** (37.5%) Yucea glauca** (37.5%) Bouteloua gracilis** (37.5%) Vulpia octoflora** (17.5%) Hesperostipa comata** (17.5%)	No data
Plot #4	001-01- Brandt2.7 Colorado, United States » Details	Bouteloua gracilis** (85%) Opuntia polyacantha** (3.5%) Lichen** (1.5%) Bouteloua hirsuta** (0.505%) Bouteloua dactyloides** (0.505%)	No data
Plot #5	001-Schieb- 7A Colorado, United States » Details	 <u>Pascopyrum smithii**</u> (37.5%) <u>Bassia scoparia**</u> (3.5%) <u>Artemisia filifolia**</u> (3.5%) <u>Chenopodium sp.**</u> (3.5%) <u>Ambrosia psilostachya**</u> (1.5%) 	No data
Plot #6	001-Schieb- 4A Colorado, United States » Details	 <u>Bouteloua dactyloides**</u> (37.5%) > <u>Pascopyrum snithii**</u> (17.5%) > <u>Opuntia polyacantha**</u> (3.5%) > <u>Astraquius sp. #22**</u> (0.505%) > <u>Salsola traqus**</u> (0.505%) 	No data
Plot #7	001-01- Brandt2.1 Colorado, United States » Details	 Agropyron cristatum** (62.5%) Unknown sp.** (62.5%) Vulpia octoflors** (37.5%) Bromus tectorum** (37.5%) Pascopyrum smithii** (17.5%) 	No data

Maintaining Dynamic Content

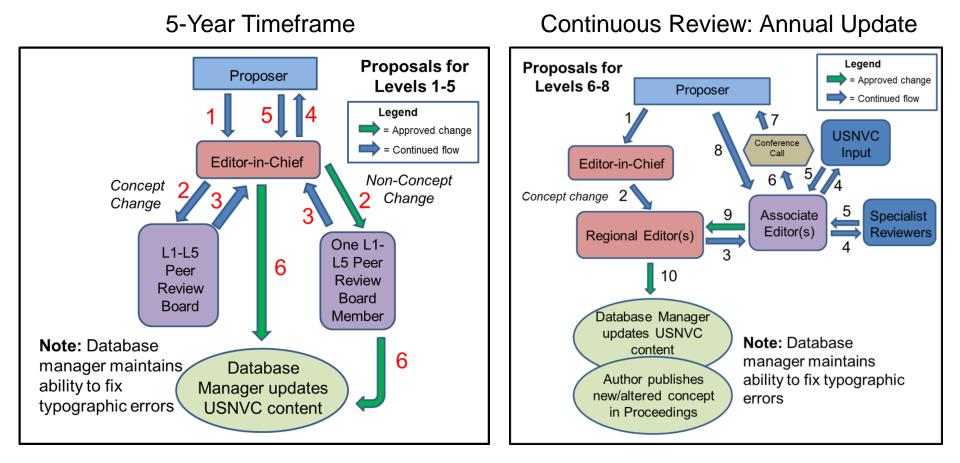

Peer Review Board

Editor-in-Chief Regional Associate Editors Associate Editors

Determine **type** of review and coordinate

Authors /	Minor, non-Sig. edits	Minor Edits to existing types	• AE only
Investigators can submit several types of	Mod/Maj Sig. edits Full data	Full Peer Review	 Quantitative, good quality data Range wide study Full proposal AE, 2 external reviewers, NVC team
changes to NVC	Mod/Maj Sig. edits Min. data	Expedited Review	 Data variable Local study / range-wide persp. Brief proposal AE, 1 other (internal) review

Significant Edits: Moderate = Type Revision; Major = New Type Concept Data = vegetation plot, new literature publications, etc.



	Region	
WEST	Warm Desert	
	Californian	
	Cool Semi-Desert	
	Vancouverian (North Pacific)	
	Rocky Mountain	
GREAT PLAINS	Great Plains	
EAST	Laurentian-Acadian	
	Central Interior-Midwest	
	Appalachian- Northeast	
	Southeast Coastal Plain	
CARIBBEAN	Caribbean	
BOREAL	Boreal-Subarctic	
ARCTIC	Arctic / Alpine	
POLYNESIA	Hawaii	

Peer Review Process

Essentially similar to journal submission, but with more interaction among reviewers/authors: proposal of change is submitted

Goal is to improve NVC

USNVC: Applications

• LANDFIRE sequence tables

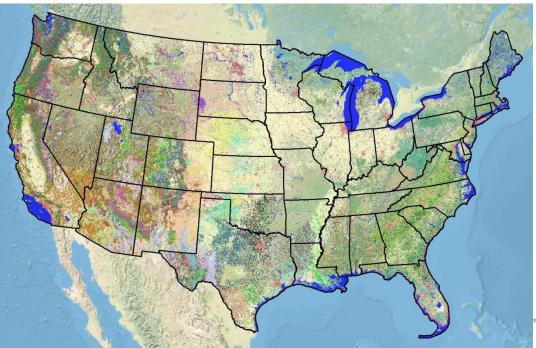
 has relied on sequence table process to support labeling of plot data for mapping Ecological Systems, this year they are expanding that effort to include NVC macrogroups and groups.

• FIA AutoKey

- NatureServe is working with FIA to develop auto-keys for labeling FIA plots to macrogroups and groups for eastern forests.
- BLM Instruction Memorandum
 - Providing guidance to field offices with respect to use of the NVC standard.
- NPS Vegetation Inventory
 - Field data collection and vegetation classification work.
- NRCS Ecological Site Descriptions
 - Field data, cross-walking to NVC Types

SCIENTIFIC BASIS FOR ECOVEG

Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Dave Tart, Bruce Hoagland, Carmen Josse, Gonzalo Navarro, Serguei Ponomarenko, Jean-Pierre Saucier, Alan Weakley, and Patrick Comer


- describe vegetation types at multiple thematic scales, from formations (biomes) to fine-scale associations (biotopes).
- inventory vegetation and ecosystem patterns within and across landscapes and ecoregions.
- support status and trends of ecosystems.
- facilitate interpretation of long-term and short-term vegetation change.
- track ecosystem responses to invasive species, land use, and climate change.

EcoVeg currently guides the U.S. National Vegetation Classification (NVC), Canadian NVC, Bolivian NVC, and the International Vegetation Classification (IVC), including North America, South America, Africa, and all grasslands.

Crosswalking to the middle and lower levels is necessary to refine and improve map products and to facilitate data sharing among agencies and partners.

For example, the ecological systems classifications used by ReGAP, Landfire, and NatureServe can be crosswalked to or nested within the Macrogroup (Level 5), Group (Level 6) and Alliance (Level 7) levels of the new NVC hierarchy.

USNVC Bureau of Land Management – Guidance to Field Offices

- Objectives: Encourage the application of the NVC
 Standard in all field offices throughout the bureau.
 Land Use Plans required to report at Macrogroup level.
- Timeframe Ongoing
- Benefits: Standardized map legends for use in land use management planning at a variety of scales. Facilitate the all lands approach to inventory and monitoring.

NVCS classification categories related to planning use scales. These are only general examples; assessment and planning needs and purposes should dictate the degree of vegetation description needed.

	Scale		NVCS Classification Categories
Broad-Scale	Global	Climate Change Assessments	Class
	Continental / National	National Trend Assessments	Sub-class
	National /Regional	Trend Assessments	Formation
	Regional	Regional Plans & Tread Assessments	Division
Mid-Scalo	Sub-regional, State & Sub-basins	State-level Conservation Assessments & Plans, RMP's, Sub- basin Assessments	Macrogroup
Mid-Scale	Activity Plans / Project Plans	Watershed Assessments, County Plans/ BLM Activity Plans / Project Plans	Group
Fine Scale	Project Plans	Project Assessments & Plans / Special Area Plans (e.g. ACEC's)	Alliance
	Site Plans	Site Descriptions and Plans	Association

International Collaborative Efforts

Applied Vegetation Science 18 (2015) 543–560

SYNTHESIS

A comparative framework for broad-scale plot-based vegetation classification

Miquel De Cáceres, Milan Chytrý, Emiliano Agrillo, Fabio Attorre, Zoltán Botta-Dukát, Jorge Capelo, Bálint Czúcz, Jürgen Dengler, Jörg Ewald, Don Faber-Langendoen, Enrico Feoli, Scott B. Franklin, Rosario Gavilán, François Gillet, Florian Jansen, Borja Jiménez-Alfaro, Pavel Krestov, Flavia Landucci, Attila Lengyel, Javier Loidi, Ladislav Mucina, Robert K. Peet, David W. Roberts, Jan Roleček, Joop H.J. Schaminée, Sebastian Schmidtlein, Jean-Paul Theurillat, Lubomír Tichý, Donald A. Walker, Otto Wildi, Wolfgang Willner & Susan K. Wiser

GIVD

WRITE BACK WRITE BACK

How a national vegetation classification can help ecological research and management

Peer-reviewed letter

The elegance of classification lies in its ability to compile and systematize various terminological conventions and masses of information that are unattainable during typical research projects. Imagine a discipline without standards for collection, analysis, and interpretation; unfortunately, that describes much of 20th-century vegetation ecology. With differing meth-

Currently developing an official Vegetation Classification Working Group of the International Association of Vegetation Scientists

General scope: vegetation classification at any spatial or organizational scale, particularly the underlying methodologies and standards, ultimately allowing greater understanding and crosswalks among national classification systems.

Steering Committee

Scott Franklin (Chair) John Hunter (Secretary) Flavia Landucci Miquel De Cáceres Jürgen Dengler Pavel Krestov

163 members of 41 countries on 6 continents

Tasks and Leaders of VCWG

- 1. Development of IAVS WG Steering committee
- 2. Increase our international network Steering committee
- 3. Comparing and finding commonalities between
- approaches Dave Roberts
- 4. Course scale vegetation classification Pavel Krestov and Javier Loidi
- 5. Fine scale vegetation classification Miquel De Cáceras and Flavia Landucci
- 6. Appropriate methods for survey and analysis TBD
- 7. Publication introducing WG and need for global collaboration for classification TBD
- 8. WG Web Page Miquel De Cáceres

	Yuan	Jiang	China
Current Chinese Members	Liping	Li	China
	Jian	Ni	China
	Runguo	Zang	China

EcoVeg and Other Hierarchies

USNVC	Blaun-Blanquet	Brown et al. 1998	Rübel	Song Yongchang & Map of Veg. for PR China
Upper				????????
L1-Formation Class L2-Formation Subclass L3-Formation	Formation	Formation-type	Formation	Type Group Vegetation Type Subtype
Mid				
L4-Division L5-Macrogroup L6-Group	Division Class Order	Biotic Community		Formation Group Formation Subformation
Lower				
L7-Alliance L8-Association	Alliance Association	Series/Alliance Association	Alliance Association	Association Group Association (subassociation)

Example Comparison that NEEDS Expertise

	· · ·		•
USNVC	USNVC Example	China	PR Map & Song Example
Upper			
Level 1 – Formation Class	Shrub & Grass Vegetation [mesomorphic]	????	????
Level 2 – Formation Subclass	Temperate & Boreal Shrubland & Grassland	Type Group	Broad-leaved Forest
Level 3 - Formation	Temperate Grassland & Shrubland	Vegetation Type	Evergreen Broadleaved Forest
Mid			
Level 4 – Division	Great Plains Grassland & Shrubland	Vegetation Subtype/ Formation Group	Typical Evergreen Broad- leaved Deciduous Forest
Level 5 – Macrogroup	Tallgrass Prairie Grassland		
Level 6 – Group	Central Tallgrass Prairie	Subformation/ Collective Group	Eastern Cyclobalanus
Lower			
Level 7 – Alliance	Big Bluestem – Indian grass Grassland	Association Group/ Dominance Type	Cyclobalanus spp.
Level 8 – Association	Big Bluestem – Indian grass / Gayfeather Grassland	Association / <i>Community</i>	Serissa serisoides/ Cyclobalanopsis glauca Comm.

U. S. National Vegetation Classification

Financial Support of Panel:

Slides stolen from: Marianne Burke, Don Faber-Langendoen, Alexa McKerrow, Todd Keeler-Wolf, & Bob Peet

Vegetation Classification Panel

http://esa.org/vegweb2/

www.usnvc.org