

Next Generation Science Standards and Life Sciences

John Olson

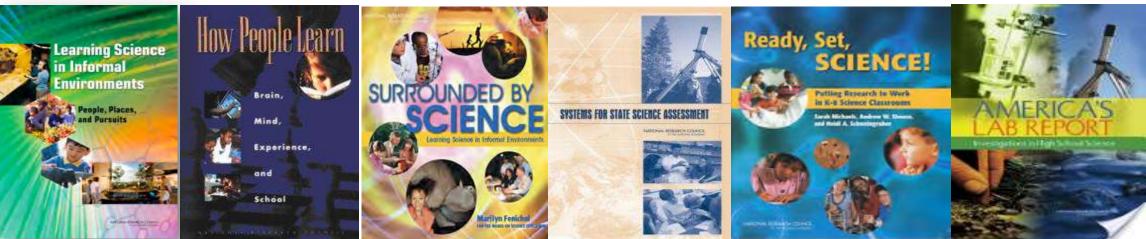
Minnesota Dept. of Education

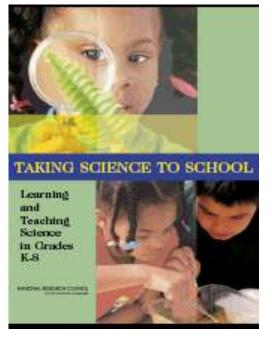
Building on the Past; Preparing for the Future

A FRAMEWORK FOR K-12 SCIENCE EDUCATION

Practices, Crosscutting Concepts, and Core Ideas

NATIONAL RESEARCH COUNCE.

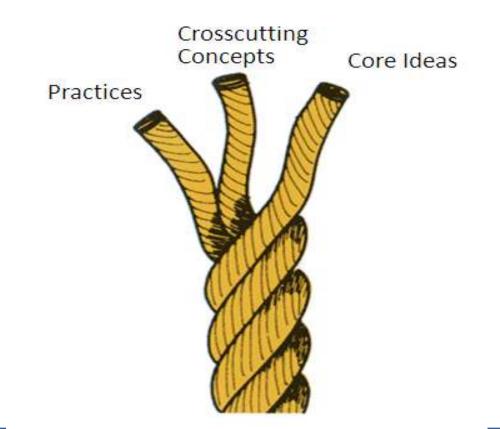



A new Vision of Science Leaning that leads to a new Vision of Teaching.

free download at **www.nap.edu**

The Guiding Principles of the Framework are Research-Based and Include...

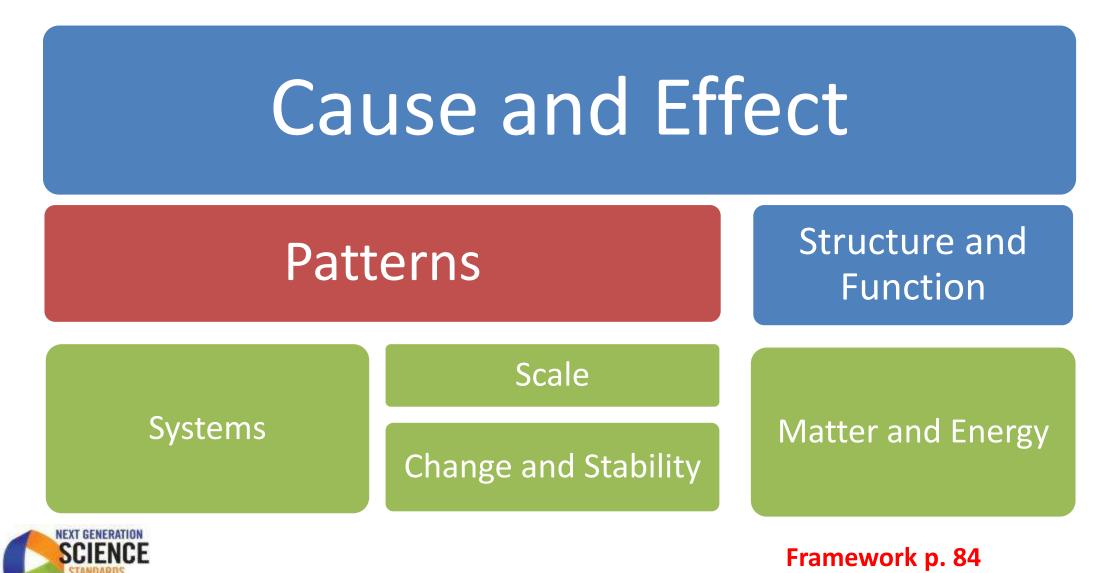
- Children are born investigators
- Understanding builds over time
- Science and Engineering require both knowledge and practice
- Connecting to students' interests and experiences is essential
- Focusing on core ideas and practices
- Promoting equity



Three Dimensions

- Dimension I Scientific and Engineering Practices
- Dimension II Crosscutting Concepts
- Dimension III Core Ideas

I. Science and Engineering Practices


- 1. Asking questions and defining problems
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Developing explanations and designing solutions
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Framework p 50

II. Cross Cutting Concepts

III. Disciplinary Core Ideas

A core idea for K-12 science instruction is a scientific idea that:

- Has <u>broad importance</u> across multiple science or engineering disciplines or is a <u>key organizing concept</u> of a single discipline
- Provides a <u>key tool</u> for understanding or investigating more complex ideas and solving problems
- Relates to the <u>interests and life experiences of students</u> or can be connected to <u>societal or personal concerns</u> that require scientific or technical knowledge
- Is <u>teachable</u> and <u>learnable</u> over multiple grades at increasing levels of depth and sophistication

Core Ideas

Physical Sciences

DC4		1 • •	•	• •
PS1:	Matter	and its	Intera	otions
	inaccei			

- PS2: Motion and stability: Forces and interactions
- PS3: Energy
- PS4: Waves and their applications in technologies for information transfer

Earth and Space Sciences

- ESS1: Earth's place in the universe
- ESS2: Earth's systems
- ESS3: Earth and human activity

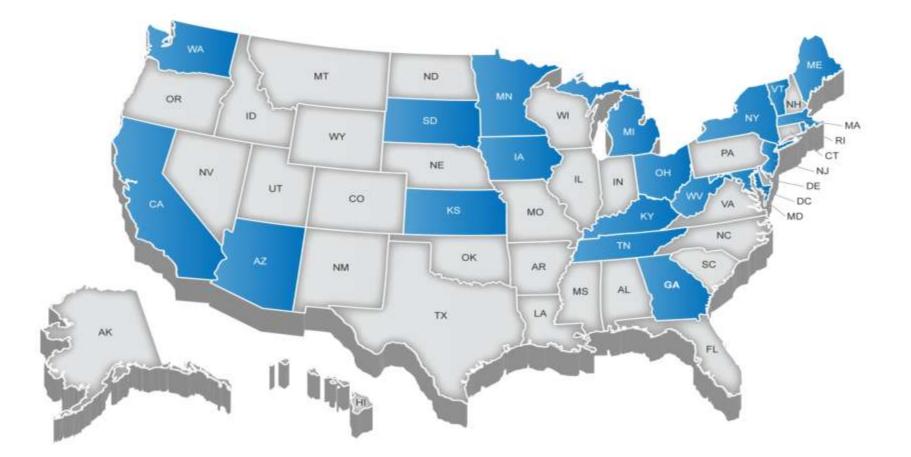
Engineering, Technology and Applications of Science

- ETS1: Engineering design
- ETS2: Links among engineering, technology, Science, and society

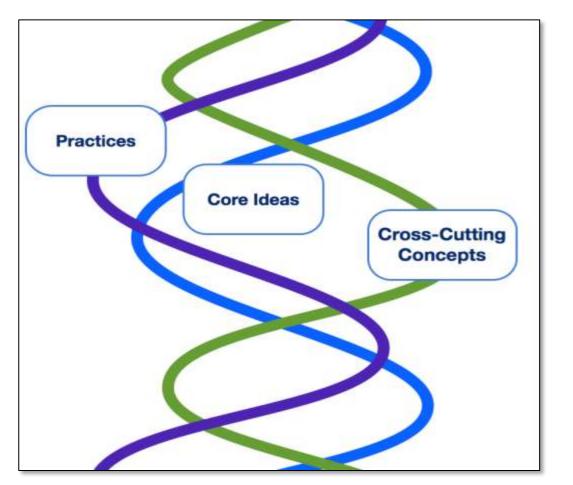
Life Sciences

- LS1: From molecules to organisms: Structures and processes
- LS2: Ecosystems: Interactions, energy, and dynamics
- LS3: Heredity: Inheritance and variation of traits
- LS4: Biological evolution: Unity and diversity

Life Science Core and Component Ideas



LS1: From molecules to organisms:	LS2: Ecosystems: Interactions, energy, and		
Structures and processes	dynamics		
Structure and Function	Independent relationships in ecosystems		
• Growth and Development of Organisms	• Cycles of matter and energy transfer in ecosystems		
• Organization for matter and energy flow	 Ecosystem dynamics and resilience 		
in organisms	 Social interactions and group behavior 		
Information Processing			
LS3: Heredity: Inheritance and	LS4: Biological evolution: Unity and		
variation of traits	diversity		
Inheritance of traits	Evidence of common ancestry and diversity		
Variation of traits	Natural Selection		
	Adaptation		
	 Biodiversity and humans 		


Framework p. 142

Lead State Partners

Three Dimensions Intertwined

- NGSS will require contextual application of the three dimensions by students.
- The NGSS are written as Performance Expectations

Students who demonstrate understanding can:

MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical

The performance expectations above were developed using t	he following elements from the NRC document A /	Framework for K-12 Science	Education:
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Co	oncepts
Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. • Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-P51-a), (MS-P51-c), (MS-P51-d) 	 PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), (MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d). 	Energy and Matter • Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)	
 Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) 	combine practices, core ideas, and		
			SL

Students who demonstrate understanding can:

MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	
 Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) 	 PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), (MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) 	 Energy and Matter Matter is conserved because atoms are conserved in physica and chemical processes. (MS-PS1-d) 	
Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d)	Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of <i>what is to be assessed</i> .		

Students who demonstrate understanding can:

MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:			
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	
 Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) 	 PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), (MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) 	Energy and Matter • Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)	
Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d)	Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of <i>what is to be assessed</i> .		

Students who demonstrate understanding can:

MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:				
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Co	oncepts	
 Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) 	 PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), (MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) 	Energy and Matter • Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)		
Connections to Nature of Science			1	
 Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) 	Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of <i>what is to be assessed</i> .			

Students who demonstrate understanding can:

MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical

The performance expectations above were developed using t	he following elements from the NRC document A /	Framework for K-12 Science	Education:
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Co	oncepts
Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. • Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-P51-a), (MS-P51-c), (MS-P51-d) 	 PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), (MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d). 	Energy and Matter • Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d)	
 Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) 	combine practices, core ideas, and		
			SL

Conceptual Shifts in the NGSS

- 1. K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World.
- 2. The Next Generation Science Standards are student performance expectations NOT curriculum.
- 3. The science concepts build coherently from K-12.
- 4. The NGSS Focus on Deeper Understanding of Content as well as Application of Content.
- 5. Science and Engineering are Integrated in the NGSS from K–12.
- 6. NGSS content is focused on preparing students for the next generation workforce.
- 7. The NGSS and Common Core State Standards (English Language Arts and Mathematics) are Aligned.

Resources

- Framework for K-12 Science Education; Taking Science to School; Ready, Set, Science <u>www.nap.edu</u> (FREE)
- Next Generation Science Standards <u>www.nextgenscience.org</u>
- National Science Teachers Assn. <u>www.nsta.org/ngss</u>
- John.c.olson@state.mn.us, Science Content Specialist

