

Ecological effects of air pollution

Bridget Emmett Centre for Ecology and Hydrology

Ozone

Effects on yield quality for the horticultural industry

This leads to estimated large economic losses across Europe

UNECE ICP Vegetation

Centre for Ecology & Hydrology

But are we under-estimating effects and their location?

AOT40 for crops

Stomatal fluxes to wheat (nmol O3 m-2 s-1 (June)

Are native plant species sensitive to ozone damage?

Potentilla erecta

Carex echinata

Ozone concentrations are a particular concern in mountain areas

Snowdon: Data from May to August 2003

Centre for Ecology & Hydrology

High background

Peaks of up to 100ppb

A new problem is the change from high peaks to high background concentrations

Nitrogen

Sources of Nitrogen

Energy and Fertilizer production

Agriculture

Centre for Ecology & Hydrology

Sewage

UK emissions

- → Agriculture (animals)
- Domestic coal combustion
- \rightarrow NO_x emissions

N deposition in the UK (David Fowler CEH)

Annual N deposition 2001

Wales?

- average of 20 kgN/ha/yr (or 2000 cowpats/ha/yr!)
- can be > 50 kgN/ha/yr near to pig or chicken units

EFFECTS

Emission	Pollutant	Target
NO _x	O ₃ , PAN photochemical smog	human health / crops / materials / radiative forcing (+'ve)
NO _x , NH ₃	deposited acidity	Acidification of terrestrial & freshwater systems / materials
NO _x , NH ₃	aerosols	climate radiative forcing (-'ve) / human health
NO _x , NH ₃	deposited Nitrogen	Eutrophication of terrestrial and freshwater systems / carbon sequestration

Effects-based approach to assessment and policy

Implications for terrestrial systems? (Jane Hall et al. CEH)

Habitats at risk from acidity:

- 73% in 1995-97
- 60% in 1999-01
- 47% by 2010

and for nitrogen enrichment..... (Jane Hall et al CEH)

- 65% in 1995-97
- 59% in 1999-01
- 49% by 2010

Evidence of change? Countryside Survey 1990 - 98

Evidence of change? Countryside Survey 1990 - 98

Countryside Survey www.CS2000.org.uk heath/bog ** * moorland upland wooded ø lowland wooded infertile grassland *** fertile grasslandbut a decrease in crop systems due to tallgrass/herb reduced fertiliser use crops/weeds* -0.05 0.05 0.1 0 0.15 Change in fertility score

A 2nd independent source of UK-wide evidence of species change

New Plant Atlas of the British and Irish Flora. (Preston et al. 2002)

And habitat specific surveys...

Sand dune systems Laurence Jones (CEH)

Impacts on rivers and lakes?

(Ed Tipping CEH)

N also causes loss of freshwater plant diversity..

How will air emission policies change impacts in the future?

What will happen and when? International requirement now for dynamic modelling

Centre for Ecology & Hydrology

Interactions with climate change and management?

Possible areas of concern

Ozone and NOx are greenhouse gases

Climate change causes release of pollutants from the soil

Effects are more than additive e.g. increased pest and diseases attack

Grazing effects response to N deposition

➢Effects on C sequestration

≻.....etc etc

What evidence do we have?

Conclusions

- Air pollution is having real and measurable effects on semi-natural systems in the UK
- Air pollution does not act in isolation and interactions with climate change and management have to be considered.
- New dynamic modelling tools are now being developed with EU partners to understand trends and forecast future changes

Why should we care?

- We are losing biodiversity (damaging soils and waters)
- Ozone and NOx contribute to climate change
- We will fail international commitments
- It costs us money!
- What can we do? limited other than cutting emissions